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ABSTRACT. The 3x+1 function T(x) takesthevalues (3x+1)/2 if x isodd 
and x/2 if x is even. Let a be any integer with a # 0 (mod 3). If nk(a) 
counts the number of n with T(k) (n) = a, then for all sufficiently large k, 
(1.302)k < nk(a) < (1.359)k. If 7a (x) counts the number of n with ini < x 
which eventually reach a under iteration by T, then for sufficiently large x, 
7ra (x) > x 65 . The proofs are computer-intensive. 

1. INTRODUCTION 

The 3x+ 1 problem concerns the iteration of the function T: Z -+ Z defined 
by 

(1.1) { 3x+ 1 if x 1 (mod 2), 2 if x 0(mod 2). 

The 3x + 1 conjecture asserts that, for all n > 1, some iterate T(k) (n) = 1. 
More generally, it is conjectured that T has finitely many cycles under iteration 
and that every n E Z eventually enters a cycle (cf. Lagarias [6]). The 3x + 1 
conjecture has been verified for all n < 5.6 x 1013 by Leavens and Vermeulen 
[8]. 

One approach to these conjectures is to study how many integers n below a 
given bound x have some T(k) (n) = 1. More generally, for any a E Z, set 

(1.2) 7a(X) = #{n: InI < x and some T(k)(n) = a, k > O}. 

It is well known that the growth of 7ra (x) depends on the residue class of a 
(mod 3). If a _ 0 (mod 3), then the preimages of a under iterates of T are 
exactly {2ka: k > 1}; hence 7ra(X) grows logarithmically with x. The other 
cases are covered by the following conjecture. 

Conjecture A. For each a $ 0 (mod 3), there is a positive constant ca such that 

7(a(X) > CaX for all x > lal. 

In any case, one has, for a X 0 (mod 3), 

(1.3) 7(a(x) > x7 forx >xo(a), 
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for some constant y > 0. This was first shown by Crandall [3], with y = .05. 
Crandall's approach directly studies the tree of preimages of a under T. 
Sander [9] strengthened Crandall's approach to obtain y = .30. Krasikov [5] 
introduced a different method which derives a system of difference inequal- 
ities with variables associated to congruence classes (mod 3k). Using these 
inequalities for k = 2, he obtained y = .43. Wirsching [10] used Krasikov's 
inequalities with k = 3 to obtain y = .48. 

In studying 7ta(x), a related problem concerns the size of the tree of preim- 
ages of a under T. Let 

(1.4) nk(a) := #{n: T(k) (n) = a}. 

Lagarias and Weiss [7] proved a result implying that, for a 0 0 (mod 3), the 
average size of nk(a) as a varies is 3 (4 )k . They conjectured 

Conjecture B. For each a X 0 (mod 3), 

4 k(1+o(1)) 

(1.5) nk(a) =3) ask 
-* o0. 

For a not in a cycle, they showed that 

(1.6) 1 X) < nk(a) < 2(X 

by studying all possible trees of backward iterates of depth 4. 
The object of this paper and its sequel is to obtain improved bounds for 

naa(x) and nk(a), using computer-assisted proofs. This paper obtains bounds 
based on the tree-search approach started by Crandall, while the sequel obtains 
bounds for 7ta(x) derived from Krasikov's difference inequalities. 

In ?2 we study trees 4k*(a) containing all n X 0 (mod 3) with T(V)(n) = a 
for some j < k. The structure of this tree depends only on a (mod 3 k+1). 

Each leaf n of the tree is assigned a weight which counts the number of iterates 
T(i)(n) 1_ (mod 2), for 0 < i < k - 1 . By computer search we find, for all 
k < 30, upper and lower bound statistics concerning the number of leaves of 
such trees having a fixed weight. An immediate consequence is 

Theorem 1.1. For any a 0 0 (mod 3), and for all sufficiently large k, 

(1.7) (1.302053)k < nk(a) < (1.358386)k. 

The proof of Theorem 1.1 is unavoidably computer-intensive; in effect it 
searches all trees of depth 30. 

The upper bound and lower bound statistics for number of leaves lie within 
a small constant factor of (4 )k . They appear to have a narrower distribution 
than that predicted by the branching process models for 3x + 1 trees studied 
in [7], as we show in detail elsewhere [2]. 

In ?3 we use Chernoff bounds to obtain lower bounds for the number of leaves 
in such trees having a large weight. Considering trees of depth k, we obtain a 
bound yk for the exponent y in (1.3) by optimizing a "large deviations" bound 
for the number of heavily weighted leaves in a "worst-case" tree of depth k. 
Taking k = 30, we obtain 
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Theorem 1.2. For each a X 0 (mod 3), there is a positive constant ca such that 

(1.8) 7(a(X) > cax65 for all x > lal. 

This exponent improves on previous bounds; however, in part II we will show 
that Krasikov's inequalities give still better exponents. 

In ?3 we also obtain upper bounds for the number of leaves in any tree 
,Tk* (a) that have a large weight. Korec [4] showed for all fi > fc := Kg3 that 

log 4 
the set {n: some IT(k)(n)l < Inl} has density one. We describe an approach to 
lower the bound f3c using such upper bound estimates. This approach becomes 
effective, however, only if a certain threshold is exceeded, and it is not reached 
by tree depth k = 30. 

2. 3x + 1 TREES 

Throughout this section we suppose that a - 0 (mod 3). The preimages 
under T-1 of a form an infinite labelled by tree 9(a), whose root node is 
labelled a and whose nodes at the kth level are labelled by {n: T(k) (n) = a}. 
Note that if a is not in a cycle, then no two nodes of T9(a) have the same 
label, while if a is in a cycle then labels will be repeated. The tree 9'(a) is 
constructed recursively using the multivalued operator 

T l(n) { {2n if n O, 1 (mod 3), 

{2n, 2n1} if n 2 (mod 3). 
Each node n at level k of the tree is connected to one or two nodes at depth 
k + 1 of the tree, which are labelled using the labels in T-1 (n) . 

In studying asymptotic properties of nk(a), it proves convenient to throw 
out all preimages n- 0 (mod 3), and to estimate instead the quantity 

(2.1) n*(a) := #{n: T(k)(n) = a and n 0 0 (mod 3)}. 

It is easy to show that 
n*(a) < nk(a) < kn*(a) 

(see Lemma 3.1 of [7]); hence nk (a) and nk(a) have similar exponential growth 
rates in k as k oco. 

Thus, following [7], we study the smaller tree * (a) resulting by deleting 
all nodes n 0 O (mod 3) from 9(a). The inverse operator (T*)-l of T on 
the restricted domain {n: n X 0 (mod 3)} is 

(2.2) (T*) - t(n) { {2n} if n -1, 4, 5, or 7 (mod 9), (2.2) (T*<1(n) = 2n, 2n~- } if n 2 or 8 (mod 9). 

Let 4*(a) denote the depth-k subtree of 9(a); see Figure 2.1 (next page) 
for 95(4) and 75* (4). 

We next assign weights to nodes and edges of the tree which keep track of 
3x + 1 iterates (mod 2). An edge connecting 2n and n is assigned weight 0, 
while one connecting 2n1 1 and n is assigned weight 1. Each node of a tree 
(except the root) is then assigned weight equal to the sum of the weights of the 
edges connecting it to the root node. Thus a leaf I of T*(a) is assigned 

(2.3) weight(l) #{i: T(M)(l) =1 (mod 2), 0 < i < k - 1}. 
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42 128 40 13 12 128 40 13 

21 64 20 6 64 20 

32 10 3 32 b 10 

t 16 5 16 5 

b 4 4 4 

9-5(4) 5 (4) 

FIGURE 2.1. 3x + 1 tree S5(4) and pruned tree * (4) 

The weight approximately measures the size of the node label, namely, 

(2.4) I < 3-weight(l)2ka 

In addition it can be shown that 

(2.5) 1 = (1 + o(1))3-weight(l)2ka as k -+ o 

for all those 1 having weight (1) < 16k. 

The branching structure of the tree 4k*(a), together with the weights of 

all its nodes and edges, is completely determined by the congruence class of a 

(mod 3k+1); thus the number of distinct tree structures k* (a) is at most 2*3k . 
We study various statistics concerning the leaves of the trees 4*(a). Let 

wj (a) count the number of leaves of 4k*(a) having weight j. This gives the 

vector of weights 

(2.6) w* (a) := (wk(a), wk(a), . W. ., k(a)). 

Now let Nk (a) count the number of leaves of 4k*(a), and we have 

(2.7) N*(a) = wk(a) + wk(a) +... + wk(a). 

It is obvious that n*(a) < N,*(a), and equality holds whenever a is not in 

a cycle of T. Theorem 3.1 of [7] showed that the expected size E[N,*(a)] 

averaged over residue classes a (mod 3k+1) with a 0 0 (mod 3) is 

/4 k 
(2.8) E[Nk (a)]= (3) 

We study the quantities 

N+(k):= max{NZ(a): a (mod 3k+1) with a 0 0 (mod 3)}, 

N-(k) := min{N, (a): a (mod 3k+1) with a X 0 (mod 3)}. 

We also study the majorant vectors w+ (k) and the minorant vectors w- (k) 
which we now define. We say that a vector w = (wo, ..., Wk) majorizes a 
vector w' = (w6, ... , W) if 

i i 

ZWkj>ZW j, 0?i<k, 
1=0 j=0 
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while w minorizes w' if 

ZWkUj<ZWK, 0<i<k. 
j=O j=O 

The majorant vector 

w+(k) := (wo+(k), wl+(k), *,wk (k)) 

is the smallest vector majorizing all the w* (a) and is determined by the condi- 
tions 

(2.9) Zwi+j(k) = max w k_j(a) a (mod 3k+1) with a 0 0 (mod 3) 
j=O = 

0 < i <k. 

Similarly, the minorant vector 

w-(k) := (wo-(k), w- (k), *,wk-(k)) 

is determined by the conditions 

(2.10) 
i i 

w-j(a) =minZ Ewk(a): a (mod 3k+1) with a 0 (mod 3)} 

0 < i <k. 

It is easy to see that these definitions imply that 

k 
(2.1 l a) N+(k) = Zwp(k), 

j=O 

k 

(2.1 lb) N- (k) =E wy-(k). 
1=0 

In view of (2.8), we have 

(2.12) N-(k) < (3) < N+(k) k > 1. 

We computed the vectors w+(k) and w-(k) for 1 < k < 30; the data for 
w-(k) and N-(k) appear in Table 2.1 (next page), and that for w+(k) and 
N+(k) in Table 2.2 (see p. 417). Details on the computational method are given 
at the end of the section. 

The associated growth rates are 

(2.13) g-(k) = N-(k)llk; g+(k) = N+(k)l/k. 

They are tabulated for 1 < k < 30 in Tables 2.1 and 2.2. 
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TABLE 2.1. Lower bounds for growth rates 

k N-(k) g-(k) minorizing vector w-(k) 
1 1 1.000000 1 0 

2 1 1.000000 I 0 0 
3 1 1.000000 10 0 0 

4 2 1.189207 11 0 0 0 

5 2 1.148698 11 0 0 0 

6 3 1.200937 120 0 0 00 

7 4 1.219014 121 0 0 00 0 

8 5 1.222845 122 0 0 00 0 0 

9 6 1.220285 1230000000 

10 9 1.245731 13320000000 

11 11 1.243575 .1 34300000000 

12 16 1.259921 1455100000000 
13 20 1.259155 14663000000000 
14 27 1.265436 148851000000000 
15 36 1.269853 1410 108300 00 0 0.00 
16 48 1.273731 151113 11 7000000000.. 
17 64 1.277162 1512 18 178300000000. 
18 87 1.281596 1614232016700000 00 ... 

19 114 1.283093 1616272823 1120000000 . 

20 154 1.286400 16183239292180000000... 
21 206 1.288796 162038494531133000000... 
22 274 1.290645 172245616143268000000... 
23 363 1.292112 1724527781624017200000... 
24 484 1.293804 18 26 60 92 106 91 62 29 9 0 0 0 0 0 ... 

25 649 1.295656 182969 115 135 12792541720000... 
26 868 1.297239 18 32 79 139 175 171 134 83 38 8 0 0 0 0 
27 1159 1.298627 1 8 35 89 164 223 232 189 131 63 22 2 0 0 
28 1549 1.299961 1 9 38 100 193 276 307 269 194 108 45 9 0 0 

29 2052 1.300807 1 9 40 113 227 339 401 366 275 171 83 25 2 0 
30 2747 1.302053 110 43 127 265 418 510 506 402 266 134 56 9 0 ... 

Theorem 2.1. For any k > 1, and any a $ 0 (mod 3), 

(2.14) g- (k) < lim inf Nj (a) 1/J < lim sup N* (a)l/J < g (k). j-*O J J-400 

In addition, 

(2.15) g-(k) < liminfn (a)1'I < lim sup nj(a)/I < g+(k). 
j-00 J j-400 

Proof. Since each tree of depth jk splits into trees of depth k attached to each 
leaf of the tree of depth j(k - 1), we get by an easy induction 

N-(k)i < NJ*,,(a) < N+(k)J. 

For 0 < / < k, we obviously have 

N-(k)i < N-*k+l(a) < N+(k)J+'. 

Taking jkth roots and letting j --~oo yields (2.14). 
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TABLE 2.2. Upper bounds for growth rates 

k N+(k) g+(k) majoriziiig vector wa(k) 

1 2 2.000000 1 1 
2 3 1.732051 1 l 1 
3 4 1.587401 1 1 1 1 
4 6 1.565085 1 2 1 1 1 

5 8 1.515717 1 2 2 1 1 1 

6 10 1.467799 1 2 2 2 1 1 1 
7 14 1.457916 1 3 3 2 2 1 1 1 
8 18 1.435189 1 34322111 
9 24 1.423498 1355322111 

10 32 1.414214 14665322111 

11 42 1.404650 147965322111 

12 55 1.396466 1 48 1110 65 3 22 1 1 1 

13 74 1.392474 151014 131065322 1 1 1 
14 100 1.389495 1 5 12 17 20 14 10 6 5 3 2 2 1 1 1 
15 134 1.386140 15 13 21 26 23 14 10 6 5 3 2 2 1 1 1 
16 178 1.382456 151526303224141065322111 
17 237 1.379403 16 16313841 3524 14 1065322 1 1 1 
18 311 1.375583 16 18 36 49 50 47 35 24 14 10 6 5 3 2 2 1 1 1 
19 413 1.373035 17 20 42 63 65 62 49 35 24 14 10 6 5 3 2 2 1 1 1 
20 548 1.370689 17 24 50 76 88 82 67 49 35 24 14 10 6 5 3 2 2 1 1 1 
21 736 1.369361 1 8 27 58 92 118 114 96 68 50 35 24 14 10 6 5 3 2 2 1 1 
22 988 1.368124 1 8 30 69 112 149 153 137 106 69 50 35 24 14 10 6 5 3 2 2 

111 
23 1314 1.366442 1 8 30 Z5 133 185 209 188 152 110 69 50 35 24 14 10 6 5 

322 1 1 1 

24 1744 1.364786 1 8 32 84 158 229 269 257 208 164 111 69 50 35 24 14 10 
6 5 3 2 2 1 1 1 

25 2309 1.363129 1 9 35 94 186 277 339 347 291 229 167 111 69 50 35 24 14 
10 6 5 3 2 2 1 1 1 

26 3084 1.362061 1 9 40 113 223 341 431 457 410 320 236 169 110 70 50 35 
24 14 10 6 5 3 2 2 1 1 1 

27 4130 1.361207 1 10 43 126 267 418 551 601 571 455 337 242 173 111 70 
___ ______ 50 35 24 14 10 6 5 3 2 2 1 1 1 

28 5500 1.360142 1 10 47 141 293 499 695 793 779 654 484 348 247 174 111 
70 50 35 24 14 10 6 5 3 2 2 1 1 1 

29 7336 1.359226 1 10 50 158 341 595 856 1026 1044 926 712 506 352 250 
_ 174 111 70 50 35 24 14 10 6 5 3 2 2 111 

30 9788 1.358386 1 10 53 174 408 708 1053 1310 1382 1279 1025 749 517 
_______ ________ 359 251 174 111 70 50 35 24 14 10 6 5 3 2 2 1 1 1 

To prove the upper bound in (2.15), use 

nj(a) < jnj(a) < jNJ(a), 

and (2.14). The lower bound in (2.15) is immediate if a is not in a cycle of 
T, since nj(a) = Nj7(a) in this case. If a is in a cycle, then the tree YT*(a) 
contains some a' not in a cycle, say at level 1. In that case 

nj(a) > n> (a') = NJ* ( 

and the lower bound (2.15) follows from the lower bound (2.14) for NJ*_ (a'). . 
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Theorem 1.1 follows immediately from this result, using the k = 30 entries 
of Tables 2.1 and 2.2. 

How fast do N+(k) and N-(k) grow? In order for Conjecture B to be 
derivable from Theorem 2.1, it is necessary that 

4 
lim g+(k) = lim g-(k)=-. 

k- oo k- oo 3 
We restate this as the following conjecture. 

Conjecture C. Both N+(k) and N-(k) are (4 )k(1+o(1)) as k - o. 

This conjecture is stronger than Conjecture B, because it bounds extreme 
values over all trees of depth k, while Conjecture B applies to the quantities 
nk(a), which as k - oc should behave like "random" trees. To compare the 
data with this conjecture, we give in Table 2.3 the quantities (4 )k and the ratios 
(4)k(N-(k))-l and (4)-kN+(k). Formula (2.8) implies that these ratios must 
both be at least 1, for all k > 1 . 

TABLE 2.3. Normalized extreme values 

k (A)k 43 k(N-(k)) l N+(kc) 43) 

1 1.333333 1.333333 1.500000 

2 1.777778 1.777778 1.687500 

3 2.370370 2.370370 1.687500 
4 3.160494 1.580247 1.898438 

5 4.213992 2.106996 1.898438 
6 5.618656 1_.872885 1.779785 
7 7.491541 1.872885 1.868774 
8 9.988721 1.997744 1.802032 
9 13.318295 2.219716 1.802032 

10 17.757727 1.973081 1.802032 

11 23.676969 2.152452 1.773876 

12 31.569292 1.973081 1.742199 

13 42.092389 2.104619 1.758038 
14 56.123185 2.078636 1.781795 
15 74.830914 2.078636 1.790704 
16 99.774552 2.078636 1.784022 

17 133.032736 2.078636 1.781516 
18 177.376981 2.038816 1.753328 

19 236.502641 2.074585 1.746281 

20 315.336855 2.047642 1.737824 

21 420.449140 2.041015 1.750509 

22 560.598854 2.045981 1.762401 

23 747.465138 2.059133 1.757942 

24 996.620184 2.059133 1.749914 
25 1328.826912 2.047499 1.737623 
26 1771.769217 2.041209 1.740633 

27 2362.358955 2.038273 1.748253 

28 3149.811941 2.033449 1.746136 

29 4199.749254 2.046614 1.746771 

30 5599.665672 2.038466 1.747961 
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The data support Conjecture C, and even suggest the following stronger con- 
jecture. 

Conjecture C'. There are positive constants C+ and C- such that 

c- < N-(k) < N+(k) < C+ 

for all sufficiently large k. 

Lagarias and Weiss [71 developed branching process models intended to 
mimic the behavior of 3x + 1 trees. For the branching process models ?9[3i] 
with j > 2 of [7] we prove elsewhere [2] that the analogue of Conjecture C is 
true, but the analogue of the stronger Conjecture C' is false. That is, 3x + 1 
trees empirically have a narrower variation of leaf counts than that predicted 
by such stochastic models. This deviation merits an explanation, and we raise 
this as an open question. 

The computation of Tables 2.1 and 2.2 was done as follows. For a given 
a (mod 3k+1) with a ; 0 (mod 3), let mwk(a) denote the maximum weight 
of a leaf of the tree 4k*(a). Then all trees 9k*(a') with a' _ a (mod 3MWk(a)+l) 

have identical branching structure and node weights. In doing the computation 
we group all these trees together, specifying them by a single congruence class 
a (mod 31+1) where 1 = mwk(a), which we call a clone. Let R k count the 
number of distinct clones of depth k having a maximum weight leaf of weight 
1. The values of Rk up to k = 23 are given in Table 2.4 (next page). 

The quantities Rk satisfy the identity 

k 

(2.16) ZR 3k3 = 2.3 
1=0 

Let R(k) count the total number of clones of depth k, 

k 
(2.17) R(k) Rlk. 

1=0 

Then R(k) counts all possible tree structures of depth k that occur using the 
3x + 1 function. Data on R(k) and on R(k)l/k also appear in Table 2.4. By 
means of 

k( f _ wk-I(2a) if a= 1,4 5, or 7 (mod 9), 

w t k-I (2a) + w k_-l (2a- 1) if a 2 2, 8 (mod 9), 

for O<i<k,and 

{ mwk_l (2a) if a =_ 1 4, 5, or 7 (mod 9), 
wk(a)- max {mwkIl(2a),mwkl (2a 1)+1} ifa-2or8 (mod9), 

all clones of depth k can be identified. In addition, wk(.) and mwk(.) are 
computed in O(kR(k)) operations from a hash table containing w*1 (.) and 
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TABLE 2.4. R -va1ues 

.. , . I I k EI2RX * 

1 4 4.000000 1 3 
2 8 2.828427 0 5 3 
3 14 2.410142 0 3 8 3 
4 24 2.213364 0 2 811 3 
5 42 2.111786 0 1 8 16 14 3 

6 76 2.058112 0 0 7 22 27 17 3 
7 138 2.021608 0 0 3 24 47 41 20 3 
8 254 1.998040 0 0 1 17 66 86 58 23 3 
9 470 1.981070 0 0 0 10 64 147 142 78 26 3 

10 876 1.969021 O O 0 3 49 189 284 218 101 29 3 
11 1638 1.959794 0 0 0 0 28 183 451 497 317 127 32 3 
12 3070 1.952517 0 0 0 0 9 135 555 926 809 442 156 35 3 
13 5766 1.946696 0 0 0 0 1 74 520 1387 1713 1246 596 188 38 3 
14 10850 1.941981 0 0 0 0 0 24 375 1628 3000 2937 1837 782 223 41 3 
15 20436 1.938026 00 0 0 0 3 199 1471 4255 5831 4752 2614 1003 261 

443 

16 38550 1.934757 0 0 0 0 0 0 66 1019 4767 9654 10474 7344 3612 1262 
302 47 3 

17 72806 1.932012 0 0 0 0 0 0 9 525 4131 13012 19662 17703 10934 4869 
_ 1562 346 50 3 

18 137670 1.929706 0 0 0 0 0 0 0 169 2759 13891 30899 36874 28516 15781 
6426 1906 393 53 3 

19 260612 1.927757 0 0 0 0 0 0 0 22 1364 11519 39599 65747 64880 44170 
22185 8327 2297 443 56 3 

20 493824 1.926099 0 0 0 0 0 0 0 0 415 7389 40195 98262 128421 108515 
66222 30490 10619 2738 496 59 3 

21 936690 1.924694 0 0 0 0 0 0 0 0 48 3484 31803 119644 218068 234608 
174174 96573 41087 13352 3232 552 62 3 

22 1778360 1.923498 0 0 0 0 0 0 0 0 0 968 19569 115251 310107 442990 
406347 270156 137515 54417 16579 3782 611 65 3 

23 3379372 1.922483 0 0 0 0 0 0 0 0 0 90 8687 86967 358136 717450 838789 

J_______ 
__________ 673955 407052 191781 70974 20356 4391 673 68 3 

mwk(.) for all clones of depth k - 1 . In the actual computation, memory was 
exhausted by the hash table at k = 21, so w7 (.) and mwl (.) for clones of 
depth 1 > 21 were recomputed as needed. 

The quantity R(k) grows at a somewhat slower exponential growth rate than 
2. 3k, which makes the computation feasible up to k = 30. By analogy with a 
branching process model in Lagarias and Weiss [7] one expects that there is a 
constant 0 such that R(k) = 6k(l+o(l)) as k -+ oo, and empirically we estimate 
1.87 < 0 < 1.92. Here, the lower bound 1.87 comes from R(k)l/(k+l), which is 
monotonically increasing for 8 < k < 28. Observe also that R k = 0 for small 
values of 1, which occurs because branching of the tree is unavoidable. By 
analogy with branching process models, one expects that there exists a positive 
constant 0 such that R k = 0 for 1 < (0+a(l))k and R k > 0 for (q+o(l))k < 
1 < k, as k -- oo. 
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3. LARGE DEVIATION ESTIMATES: LOWER BOUNDS AND UPPER BOUNDS 

We use minorant vectors to get lower bounds for y in (1.3), as follows. For 
any constant a E (O, 1], set 

Nj*(a; a) := #{1: 1 is a leaf in 47*(a) with weight(l) > aj}. 

By (2.4) all such leaves satisfy the bound 

(3.1) l < exp(j(log 2 - a log 3))a. 

If we set x = exp(j(log 2 - a log 3))a, and let j -+ oo, then we obtain for any 
e > 0 that 

7Ca(X) x, all x > xo (), 

where 

(3.2) Y liminf-(logNj7(a; a)). 
log2 - alog 3 j-oo j 

We next use the minorant vector w- (k) to obtain an asymptotic lower bound 
for Nj (a; a) . Form a minorizing tree k- consisting of N- (k) leaves of depth 
one, with exactly w7 (k) of these leaves having edges assigned the weight i, 
for 0 < i < k. Now, for all j > 1, recursively construct the concatenated 
minorizing tree' 4-(j) by setting 7k-(1) = Tk- with root node labelled 1 
and then forming -k (j) from -(j - 1) by attaching copies of the tree 9k- 
to each leaf of -(j - 1) . Each leaf of 9 -(j) is assigned a weight consisting 
of the sum of edge weights from it to the root node. Let 

(3.3) w-(k)(*i) := (Xok(j), ... , xk (j)) 

be a vector counting the number of leaves of Tk- (j) of weight i, for 0 < i < 
jk. (The notation w-(k)(*j) is intended to indicate repeated convolution of 
w- (k), as explained below.) Note also that the number of leaves of 9;-(j) is 
N- (k)i . We claim that 

(3.4) w- (k)(*i) minorizes w- (jk). 

To prove the claim, it suffices to show that w-(k)(*i) minorizes each wjk(a). 
We proceed by induction on j, it being obviously true for j = 1 . Take any tree 
,9jk(a) and view it as a tree 9j->1)k(a) with various trees 8k(b) attached to its 
leaves. By the induction hypothesis (3.4), the tree Tk- (j - 1) can have its leaves 
paired with those of 9>j- 1)k (a) in such a way that each leaf of Tk- (j - 1) has a 
weight no larger than the corresponding leaf of S_j- 1)k (a), and S'(j- 1)k (a) may 
have some unpaired leaves left over. Then replace =j- 1)k (a) with -k (j - 1), 
and throw away all trees Sk(b) attached to the unpaired nodes; the weight 
vector of the resulting new tree minorizes that of the old tree 9jk (a). Next, in 
the resulting tree, replace each tree 9k(b) .with the tree g, and the weight 
vector of the resulting tree minorizes the one before. This final tree is gk-(I), 
hence we have shown that w- (k)(*i) minorizes w k(a), and the induction step 
follows. 

1The tree 9;-(j) has depth j, but we will show that its leaf counts minorize those of any 
3x + 1 tree of depth jk, see (3.4). 
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Now (3.4) yields the lower bound 

3.5) N ik(a; a) > P- () X j 
i>jka 

The right side of (3.5) depends only on w- (k) and can be estimated in a stan- 
dard fashion (see Lemma 3.1 below). We can then interpolate estimates for 

Njk+l(a; al) using 

Nj a; a Tk 
O?l< 1<k. Nk+1(a; a) > N(j+l)k (;a+j)a O<I<k 

We estimate the right side of (3.5) using a "large deviations" bound in prob- 
ability theory. To do this, we assign a value to each node of the tree Sk- . Each 
leaf of weight i has value I = 2 k3-l. (These values actually approximate the 
ratio of a leaf label to the root label.) We can use this scheme to recursively 
assign values to all the nodes of the trees Tk- (j), starting by assigning the root 
node the value 1. Next, let Zk- be a random variable which draws a leaf I of 

,9k- (1) uniformly, and has 

(3.6) 4- := logl = klog2 - ilog3. 

The convolved random variable (Zk- )(*i) then equals log 1, where 1 is the value 
of a leaf of -(j) drawn uniformly. Now, the right side of (3.5) counts exactly 
those leaves of 4k--(j) with 1 = 2]k3-i < 2jk3-jka ; hence 

(3.7) PJk(ct) = (N(k))iProb[(Zr )(*i) < jk(log2 - alog 3)]. 

The estimation of (3.7) is a standard "large deviations" result. 

Lemma 3.1. The random variable Z = Zk has moment generating function 

M,7(O) = E[eOZ] = E Ni (2 k03_ 

whose Legendre transform is 

gk (fl) sup [fi 0- log M (0)]. 
OER 

If O < log2-oalog3 < I-E[Zk], then 
1 

(3.8) lim (logP I(N) = (logN (k)-g (k(log2 - alog 3))). 
j-4oo j k j19P, k () 

Proof. This is just an application of Chernoffis theorem (see [7, Lemma 2.1]. o 

Combining (3.2), (3.5), (3.7), and (3.8) yields the bound 

(3.9) y > log N (k) - g (k(log2 - alog 3)) 

(3.9) ~~~~~~k(log 2 - aog 3) 
provided 

oI] k iw - k 
O <log2 -alog3 < -E[Zkj=- i: (k) 
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For each value of k it remains to optimize the bound (3.9) by choosing the 
optimal a = a* 

Data on the expected value IE[Zj ],the optimal cutoff value a* , and the 
resulting lower bound y* are given in Table 3.1. The quantity kE[Zk ] is 
always greater than the expected growth rate of labels on a random branch of a 
"random" tree Sk(a), which is log2- 2 log 3 .418494 (cf. [7, Theorem 3.3]). 
The data shows that kE[Zr ] is not a monotonically decreasing function of 
k. Consequently, the estimates y* are also not monotonically increasing, but 
tend to increase. The largest value we found was Y30 = .654717; this proves 
Theorem 1.2. It is natural to conjecture that 1E[Z ] -- log2- I log3 and that 
Yk 1 as k - oo 

We similarly use majorant vectors w+ (k) to get upper bounds on Nj* (a; a) . 

TABLE 3.1. Lower bound exponent y* and exceptional set ex- 
ponent X4 for upper bound 

Lower Bounds Upper Bounds 

k kE[Z-) tEiZ X 

1 0.693147 0.000000 0.000000 0.143841 0.693147 
2 0.693147 0.000000 0.000000 0.143841 0.549306 
3 0.693147 0.000000 0.000000 0.143841 0.462098 

4 0.555821 0.146657 0.318622 0.189617 0.446038 
5 0.583286 0.113143 0.240657 0.198772 0.413368 
6 0.571079 0.123454 0.324572 0.198772 0.381467 
7 0.536203 0.172320 0.380922 0.233524 0.371315 
8 0.528355 0.177998 0.392520 0.243021 0.354660 
9 0.530390 0.171384 0.385017 0.255737 0.344757 

10 0.510045 0.208448 0.451594 0.274301 0.335695 

1 1 0.511558 0.200535 0.443546 0.284140 0.327324 
12 0.504323 0.215607 0.481701 0.291987 0.320073 
13 0.498777 0.222555 0.487401 0.307148 0.314558 
14 0.492607 0.233806 0.507598 0.316480 0.310239 
15 0.487666 0.239897 0.521993 0.322570 0.306111 
16 0.485727 0.241974 0.531764 0.327843 0.302016 
17 0.482109 0.250439 0.544585 0.332942 0.298374 
18 0.479177 0.254813 0.558130 0.336952 0.294522 

19 0.477077 0.258955 0.564602 0.342297 0.291267 
20 0.471641 0.268750 0.581699 0.347626 0.288169 

21 0.469158 0.274193 0.591224 0.352461 0.285683 
22 0.467338 0.277591 0.599240 0.356174 0.283427 
23 0.465503 0.281793 0.606344 0.357878 0.281210 
24 0.463229 0.286125 0.614848 0.360225 0.279030 
25 0.461643 0.288560 0.621639 0.362450 0.276928 
26 0.459970 0.292749 0.629568 0.365854 0.275026 
27 0.458350 0.296715 0.636608 0.368401 0.273360 

28 0.456692 0.299908 0.643504 0.369927 0.271726 
29 0.455602 0.303753 0.649338 0.371744 0.270171 
30 0.454481 0.305943 0.654717 0.373635 0.268692 
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We construct trees 9,+ and 9+ (j) analogously to the lower bound case, using 
w+ (k) instead of w- (k) . The vector 

w+ (k)(*i) : (y_ 
k (j) ...,Yjk (i)) 

enumerates the number of leaves in the tree ;+ (j) of different weights. We 
then show, analogously to the lower bound case, that 

(3.10) w+ (k) (*i) majorizes w+ (jk), 

from which we conclude 

(3.11) ~~NJ*k (a; a) < PJ (t)=EY(i 
i>jka 

The right side of (3.1 1) is estimated by a Chernoff inequality argument. Let Z+ 
be a random variable which draws a leaf 1 from ,97 +(1) uniformly and assigns 
the value log(l), similarly to (3.6). The convolution (Zk+)(*i) then describes 
the value log(l) for a random leaf of 9;+(j), and we have 

PtJ+ k (a) = (N+ (k))iProb[(Zk+) (*j) < jk (log2 - a log 3)]. 
The Chernoff bound formula is analogous to Lemma 3.1. 

Lemma 3.2. The random variable Z = Zk+ has moment generating function 

M,+(6) = Z 2ko3 i Mk ~N+ (k) 

whose Legendre transform is 

gk (I?) SUp [fl6 - log Mk+()]. 
OER 

If log2 - alog3 > k-E[Zk+], then 

(3.12) JlimT (logPJk())=(logN+(k) -gk+ (k (log2 - a log 3))). 

Table 3.1 presents data on kE[Zk+]. It is always less than the expected growth 
rate log 2 - I log 3 .418494 of labels on a random branch of a "random" tree 

k (a). Empirically, it appears to be a monotone function of k, unlike the 
lower bound case. It is natural to conjecture that kE[Zk+] -+ log 2 - 4 log 3 as 
k-oo. 

Upper bound estimates for Nj*(a; a) are also relevant to proving results 
saying that "almost all" integers decrease under iteration by T. Currently the 
best quantitative result of this kind is that of Korec [4]. 

Theorem 3.1 (Korec). For any /3 > f3c := -.7925 the set 

S(,B) := In: some IT(k)(n)l < nlf} 
has density one. 

Korec's method actually shows that almost all {n: InI < x} satisfy 
[log x] 

(3.13) IT(k)(n)l < xfl, fork= [log 2 

as x -- oo, for any fixed fl > f/c . 
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We show below that one can get improved bounds for f,3 in Theorem 3.1 
provided that the quantity 

(3.14) = I(logN (k) - gk+(k(log2 - I/2(log3))) 

is sufficiently small. This quantity is the upper bound (3.12) with a = 1/2, and 
its values are given in Table 3.1. 

Consider the set of "bad elements" 

R,(x) {n: I l < x and no TVP (x) < x" for 1< < l[log] }. 

The cardinality of Rj (x) decreases as 3 -, 0 and 

(3.15) li log #(R5 (x)) H 0og2 
a- o log x log 3 

where H(t) = -tlog2 t- (1 - t) log2(1 - t) is the binary entropy function (cf. [6, 
Theorem D]). Almost all {n: Inl ? x} satisfy (3.13). We can get an improve- 
ment if almost all such T(k) (n) with k = [1g] do not lie in a "bad element" 

set Rj (xO), for some fixed 3 > 0 . How many such n can hit a particular "bad" 
element y ? They must lie in the tree of preimages of y, at height j = ' 

so we need an upper bound for the number of leaves 1 in such a tree, at this 
height, having y xO and 1 < x. Such leaves correspond to paths having 
a > I as explained in [7, ?2], and we can apply2 the upper bounds (3.11)- 
(3.13) to bound the number of such leaves by exp(Xkg). Now the number 
of such "bad elements" as ,6 - f3c and 3 -- 0 satisfies 

log#(R,(xf)) = (.94995s + o(l)) logx; 

hence the number of preimages n < x which these generate is at most 

exp( ( 949951og 
3 Xk log x f`4+ l oggi2 

This bound will be O(xI--") for some e' > 0, if and only if 

(3.16) Xk < log2 - 2H (log) log3 - .171331. 

As the data of Table 3.1 show, however, for k < 30 we are a long way from 
attaining the bound (3.16). 

The assumption that 3x + 1 trees behave like the branching process models 
of [7] leads to the heuristic prediction that Xk -- 0 as k - oco. If so, this 
approach to lowering f,J should eventually work, for k large enough. The data 
of Table 3.1 indicate that the smallest k for which (3.16) holds will be so large 
that it will be impossible to compute by an exhaustive tree search. 
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2To get a rigorous bound, one must also count a few extra leaves having a < 2, which creep in 
because T-I has 2x- 1 instead of 23 . However a rigorous variant of (2.5) can be used to show 3 3 
that these leaves make an asymptotically negligible contribution. 
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